
International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Business Rules Discovery from Existing Software
Systems

Kestutis Normantas, Olegas Vasilecas
Abstract— Software maintenance consumes a large amount of its total life cycle costs. In fact, maintainers spend a lot of time analyzing

source code, configurations and resource definitions referring to the documentation in order to gain a deeper understanding of the logic of

business rules implemented in the system. To facilitate these activities, we propose a model-driven approach on business rules discovery

from existing software systems. We describe the process for obtainment of standard based intermediate representation of knowledge about

the software system and for abstraction of business logic from this representation. We believe that our on-going research on discovering

business rules will decrease the efforts required for maintenance and evolution of software systems.

Index Terms— Business Knowledge Extraction, Business Rules Discovery, Knowledge Discovery Meta-Model, Architecture-Driven Mod-

ernization, Model-Driven Reverse Engineering

—————————— ——————————

1 INTRODUCTION

CCORDING to the definition of IEEE [[1]], software

maintenance is the process of modifying a software sys-

tem or component after delivery to correct faults, improve

performances or other attributes, or adapt to a changed envi-

ronment. Software maintenance consumes a large amount of

its total life cycle costs. Canfora and Cimitile [[18]] reveal that

the cost of maintenance consumes 60% to 80% of the total life

cycle costs while Seacord et al. [[13]] observes that the relative

cost for maintaining and evolving the software has been stead-

ily increasing and reached more than 90 percent of the total

cost.

Recently, the Object Management Group (OMG) within the

Architecture-Driven Modernization (ADM) Task Force initia-

tive [[8]] provides a number of standards [[10]] for representa-

tion and analysis of existing software systems in order to sup-

port modernization, including the maintenance, activities. The

Knowledge Discovery Meta-model (KDM) [[9]] is the funda-

mental meta-model in this set of representations as it defines

representation of all aspects of the software system and ena-

bles interoperability for tools that captures and analysis in-

formation about the existing system. A number of moderniza-

tion projects [[15]] report significant cost savings by applying

architecture-driven approaches in the modernization of large

scale information systems.

Motivated by cost-effective modernization projects, we be-

lieve that by employing modern architecture-driven technolo-

gies with source code analysis techniques and a business rules

(BR) approach, the costs of maintenance and evolution of in-

formation systems may be reduced significantly. In this paper

we address related issues and propose an approach for the

discovery of BR from the existing software systems. Our con-

tributions are as follows. We describe reverse engineering ac-

tivities that must be involved to build KDM representation of

discovered knowledge about the software system. We define

how various kinds of business rules may be implemented in

the system, and analyze what source code analysis techniques

could be applied to abstract the business logic from KDM rep-

resentation.

The paper is structured as follows. We first of all, introduce

an example software system that will be considered in the dis-

cussion of the approach. Then, we overview related work of

BR extraction from the source code. After, we explain our ap-

proach by presenting the process of BR discovery. Finally, we

provide conclusions and discuss further research.
1.1 An Example Software System

In order to present general ideas of the approach for busi-

ness rules discovery, we refer to example enterprise resource

planning (ERP) system. The ERP system is designed using

multi-tiered Client/Server architecture (figure 1).

A

Fig. 1. Architecture of example Enterprise Resource Plan-
ning System

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The system acts as a platform for development of business

specific solutions: it provides customization capabilities by

enabling to define specific data objects (over data definitions);

using data definitions create forms and reports; specify work-

flows that may be assigned to data objects. It also provides

application programming interface (API) allowing automation

of particular system events using a dialect of the Visual Basic

for Application (VBA) language and integration with other

software systems using the Component Object Model (COM)

interface. Internally the system may be considered as a black-

box – the logic behind the interface may be understood only

from software technical documentation, or from experience

gained by using API in the development of business specific

solutions.

Such kind of software systems may be easily adapted to the

business requirements; however, over time, requirements

change and software system must be updated to reflect those

changes. It leads to undocumented modifications of the sys-

tem, and even worse, because the impact of these modifica-

tions to other parts of the system is very difficult to evaluate,

they usually tend to be not fully tested. Maintenance and up-

grade costs often exceed the cost to initially adapt the software sys-

tem; therefore, the approach for automated comprehension of the

business logic implemented in the software system is very important

to reduce the maintenance costs.

Figure 2 depicts a simplified fragment of example ERP,

emphasizing business rules embedded in the source code. The

top side of the picture presents user interface: the main appli-

cation dialog and the form “Order” opened over menu item

“New order”. The bottom side of the picture shows the snip-

pet of the form definition (XML) and the fragment of source

code (VBA) implementing the business logic – calculation of a

discount value.

2 RELATED WORK

Numerous methods and techniques for BR discovery from

existing software systems have been contributed in the field of

reverse engineering. Chiang [[3]] presents an approach that

uses static program slicing [[14]] of control flow graph (CFG)

Form definition in XML Automation over events in VB

Binding

Fig. 2. Fragment of ERP representing the main application dialog and the form opened over dialog menu (New order). The form is defined within the
form definition, the events of form controls are handled by VBA scripts.

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of a program code to obtain code slices representing BR, and

to transform them into the reusable CORBA components.

Huang et al. [[5]] define a number of heuristic rules for do-

main variables identification, slicing criteria identification, and

slicing algorithm selection. Code slices indicate BR imple-

mented in the system. Three representations are considered:

code-view – rules are represented as code fragments; formula-

view –rules are represented as three parts formulae (left hand

side for variable, right hand side for expression that modifies

variable, and conditions under which modifications are ap-

plied); and input-output dependence view (bidirectional data

flows between input and output parameters).

An extension to Huang et al. [[5]] solution is proposed by

Wang et al. [[16]]. The approach proposed by them consists of

five steps as follows. First, the program is sliced into multiple

slices in order to be understandable for the further analysis.

Then, two types of domain variables are identified: pure do-

main variables that represent system’s input and output; and

derived domain variables that depend on pure domain varia-

bles. Dependency is established by applying information-flow

relations computing algorithm proposed by Bergeretti and

Carre [[2]]. Having extracted domain variables and their de-

pendencies, the next step, called data analysis, identifies busi-

ness items that are actually implemented in the selected slice.

According to the obtained information, a set of business rules

is extracted and represented using multiple views in order to

be validated with stakeholders. Another improvement of

Wang et al. work is proposed by Gang [[4]]. The approach

constructs a program dependence graph and after identifica-

tion of data dependences, it augments the graph with edges

that represent dependencies among program statements. The

backward traverse is applied to the dependence graph and a

resulting dependence-cache slice is a collection of all reachable

nodes by this traverse. Resulting slices are presented for vali-

dation with stakeholders as code fragments.

However, code views requires deep understanding of tech-

nological aspects of the software system, therefore they are

difficult to be validated with stakeholders. Putrycz and Kark

[[12]] emphasize the fact that business analysts require more

than just code snippets referring the business rules. For this

reason, they propose an approach that use document (in

HTML format) content extraction and key phrase analysis to

link the source code implementing business rules with tech-

nical and other related documentation. To separate business

processing logic from infrastructure related, they focus on sin-

gle program statements that carry a business meaning, such as

calculation and branching since they most often represents

high level processing. Resulting production rules in the form

of <Condition><Action> are represented using business vo-

cabulary and business rules (SBVR).

In contrast to related works, our research concentrates on

software systems that are built using heterogeneous technolo-

gies, and aims to gather any kind of information about the

software system to facilitate the comprehension of business

logic implemented in the system. We therefore rely on the

KDM standard to represent the knowledge about the software

system and apply source code analysis to abstract the business

logic.

3 THE APPROACH FOR BUSINESS RULES DISCOVERY IN

EXISTING SOFTWARE SYSTEMS

The approach for business rules discovery in existing en-

terprise software systems is based on reverse engineering pro-

cess that obtains intermediate representation of different as-

pects of the software system using the Knowledge Discovery

Meta-Model (KDM). The process consists of the following

phases: preliminary study, knowledge extraction, and busi-

ness logic abstraction. In this section we will give an overview

of each of these phases.

3.1 Preliminary Study

The first phase of business rules discovery process involves

preliminary study of the existing software system. It aims to

define the scope and costs of such kind of modernization pro-

ject. This phase involves the following two steps: gather initial

information and define the strategy for knowledge extraction

and representation within KDM. During the first step, the pre-

sent architecture of software system is reviewed, the architec-

tural components are identified, and the high-level dependen-

cies between them are established. Based on the acquired ini-

tial knowledge about the software system, a strategy for ob-

taining the representation within KDM is defined. The strate-

gy establishes the list of software artifacts that will be pro-

cessed, the ways they will be processed, and the time expected

for delivery of each representation.

3.2 Knowledge Extraction

This phase involves several steps whose purpose is to build

knowledge base used as the main source for business logic

abstraction. The knowledge base consists of a set of KDM

models that represent software system (referred thereafter as

KDM representation), the data base of indexed software doc-

umentation, and the data base of classifiers (i.e. lookup table

values) used within the software system. It should be men-

tioned that depending on concrete project, the knowledge base

may include other existing knowledge resources, for example,

system log information to provide more clarity on software

resources usage.

The KDM representation of the software system is built by

discovering its inventory at the first step. This step produces

the KDM Inventory model representing system as it is de-

ployed: model elements represent containers, folders, files and

their types. Having discovered software inventory, the content

of identified software resource definitions and configurations

may be extracted and represented within KDM runtime re-

source models. Typically runtime resources are structured

files such as form definition, data definition, report definition,

workflow definition files, etc. These artifacts are processed by

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

software platform to create runtime objects (e.g. form instanc-

es), which may be manipulated by the platform or application

code that uses software platform API to access them. There-

fore, the representation of these definitions within the KDM is

considered in several levels of abstraction, as it is illustrated in

figure 3.

The content of resource definition files is structured accord-

ing to particular schema definition. However, the definition of

schema not always may be available to the maintainer. In such

cases, it may be reverse engineered automatically from the

content [[7]] or defined manually by considering only relevant

parts of the content. Then, according to the predefined set of

mapping rules between the schema elements and elements of

particular KDM model, the content of resource definitions is

parsed and corresponding KDM representation is created.

Configuration files consist of parameters of software plat-

form resources. While discovering their content, it is possible

to determine platform resources other than previously identi-

fied. It should be noticed that such information does not nec-

essary mean that they are actual, because the configuration

data may be obsolete, written by resources that are changed or

removed in time.

Representation of the software’s source code is obtained by

transforming its abstract syntax trees (AST) to corresponding

KDM models. An AST is generated by a parser that is built

from a grammar defined according to specialized AST meta-

model (ASTM, [[11]]). The grammar is supplemented with the

software API definition in order to discover which identifiers

in the source code represent properties or methods of software

system interfaces (i.e. API). Transformation rules are defined

according to ASTM-to-KDM mapping rules specified in [[11]]

and considering MicroKDM [[9]] semantics. The latter

allows obtain KDM representation at the sufficiently

low level of granularity – statements and expressions

of given programming language are represented us-

ing different kinds of KDM ActionElements.

Creating the database of software documentation

consists of the following steps: the digital documents

are parsed using specialized document parsing librar-

ies to retrieve trees representing logical structure of

document content (document, chapter, section, sub-

section, and body), considering a set of rules estab-

lished regarding the properties of physical content

(i.e. blocks) of document; retrieved information is fur-

ther tokenized, supplemented with corresponding

attributes and indexed with full-text index engine to

be available for linking with elements of KDM repre-

sentation in order to facilitate comprehension of the

software system artifacts.

A database of classifiers is built by reviewing

known lookup tables and files containing classifying

data definitions. For each resource, a local copy of

data is created and stored in the database to be avail-

able for further analysis. The data in this database is

later used to define base facts from the established

business terms.

3.3 Business Logic Abstraction

Having extracted all the available and relevant knowledge

about the software system into the KDM representation, the

next phase of the recovery process involves activities to sepa-

rate KDM model parts that represent business logic imple-

mentation from the infrastructure related ones. To categorize

business rules we refer to the BR formalization provided by

the GUIDE Business Rules Project [[17]]. The GUIDE classifies

BR into the following four categories: business terms, facts,

constraints (action assertions), and derivations. After a brief

introduction into preparation activities, we will discuss the

approach for separation that kind of rules.

BR implemented in the system may cover different system

resources. Therefore, we first of all establish dependencies

between inter-related elements of representation. The main

aim of this step is to build a system control flow graph (CFG)

from the KDM representation in order to be able to apply data

flow analysis techniques, such as variable reachability and

liveness analysis [[6]], and extract the business processing log-

ic. We therefore construct a code-level CFG, and supplement it

with higher abstraction level, i.e. runtime resources, depend-

encies. The CFG, obtained from the code model of example

introduced in the previous section is given in the picture be-

low.

Dependencies between runtime resources and source code

are established considering runtime resources that produce

events and procedures that handle these events. The example

of such kind of dependency has been shown in figure 3.

Fig. 3. Logical view of KDM representation of fragment of example ERP (see Fig.
2). Representation involves several layers of abstraction: runtime resource layer
includes model elements representing user interface components; program ele-
ments layer include model elements representing instances of runtime resources
(relationship implementation) and model elements representing the source code
part that is invoked by them (flow relationship Calls).

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Having established dependences, initial set of term units

and fact units (in the GUIDE classification referred as struc-

tural assertions) is derived by primarily considering the repre-

sentation of structural elements of runtime resources. We first

refer to UI models, because they contain elements that convey

business terms explicitly and therefore may be merely under-

stood by the maintainer. Thus, for each KDMEntity which is

an instance of specific type of AbstractUIElement a TermUnit

is created and added to ConceptualModel . A reference to that

entity is added to the collection of elements representing im-

plementation of TermUnit (property “implementation”). The

collection is further supplemented with references to elements

that bind with UI elements (i.e. data definition fields upon

which form and report fields are built). Then, the set of Ter-

mUnit elements is augmented with elements that correspond

to instances of specific types of AbstractPlatformElement (ex-

tracted from the configuration files).
To facilitate further refinement of derived TermUnit ele-

ments, we reference them with indices from the data base of
software documentation. For each term unit, we construct
several types of search queries: the first one limits the search
scope to a title of structural elements of indexed documents

notation

Writes

4 :SU.register

4 :AE.Call2

<t1>
1

<t1=GetDiscount
(Form.Loyal, Form.Balance)>

4: AE.Assign
<Form.Disount=t1>

3: CallableUnit

 CalculateDiscount
CodeAssembly

7: CallableUnit

 GetDiscount

7 :PU.byReference

8 :AE.GreaterThan

<loyal As Long>

8:AE.Compound
<if balance > 2000.00>

19: CallableUnit

 GetDicountValue

8 :AE.Condition

9 :AE.Condition

10 :AE.Compound

8 :SU.register
<t2>

8 :Value
<2000.00>

<balance>2000.00>

<if t2 then>

<if loyal then>

<return GetDiscount(“G”)>

15:AE.Compound
<return GetDiscount(“B”)>

7 :PU.byReference
<balance As Long>

7 :PU.return
<ret As Integer>

7: Signature

 GetDiscount

19 :PU.byValue
<loyal As Long>

19 :PU.return
<ret As Integer>

19 : Signature

 GetDiscountValue

20 :AE.Compound

20 :AE.Call 20 :AE.Return20 :SU.register

<return DBConn.GetDiscountByLevel(“G”)>

<t><t=GetDiscountValue> <return t>

Reads

Reads
Writes

Reads

Calls

EntryFlow

Flow

Flow

EntryFlow

EntryFlow

Flow

TrueFlow

TrueFlow

FalseFlow

Flow

Flow

Flow

Flow

Calls

Calls

Reads

Writes

Reads

Addresses

Reads

1

2

3

4

Reads

Writes

Reads

Reads

Writes

Reads

Reads

Flow

Writes

Reads1 2 3

1

2 3

Calls

Form.Disount

Form.Loyal

Form.Balance

CompilationUnit

CallableUnit

Signature

ParameterUnit
or StorableUnit

ValueElement

ActionElement

EntryFlow or
ControlFlow

DataFlow

Structural
Dependency

Call

10 :SU.register
<t>

3

10 :AE.Call
<t=GetDiscountValue>

2

10 :Value
<”G”>

1

10 :AE.Return
<return t>

4

Flow

15 :SU.register
<t>

3

15 :AE.Call
<t=GetDiscountValue>

2

15 :Value
<”B”>

1 15 :AE.Return
<return t>

4
Flow

12 :AE.Compound
<return GetDiscount(“S”)>

Flow

Writes

Reads

Reads

12 :Value
<”S”>

1

12 :AE.Call
<t=GetDiscountValue>

2

12 :SU.register
<t>

3

12 :AE.Return
<return t>

4

Flow

FalseFlow

Calls

Writes

Writes

Writes

Writes

DBConn.GetDiscountByLevel

3: Signature

 CalculateDiscount

External
Model
Element

Fig. 4 The CFG of source code module within KDM

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

(i.e. chapter, section, subsection); the second one limits search
scope to a body of document’s structural element. Search re-
sults ranked by relevance are referenced with TermUnit ele-
ment by creating annotation element for each matching index.

Derivation represents a particular computation of term unit
– inference or mathematical calculation. Term units that are
defined over complex computations - assignment statements
that involve more actions than a simple assignment - are being
considered as derivations. We do not, however, separate infer-
ence from mathematical calculations, and refer to a derivation
as a set of actions taken to obtain the value of given term unit
(i.e. a set of control and data flow dependent source code
statements used to compute particular variable). Therefore, a
derivation is a slice SDF, a set of ActionElements, computed
using backward slicing of CFG with criterion CDF=<DE, AE>,
where DE is a set of KDM DataElements representing imple-
mentation of particular term units, and AE is a kind of KDM
ActionElement representing output of these data elements to
user interface, database or other kind of data repository. Con-
sidering our example, it would result in a set of control and
data flow dependent ActionElements that are represented as
colored in grey CFG nodes. From this set, we can further pro-
duce the following derivations:

“A discount of Gold member may be applied when the

netto price is greater than 2000.00 € and the customer is

loyal”

“A discount of Silver member may be applied when the

netto price is greater than 2000.00 €”

“A discount of Bronze member may be applied when the

netto price is less than 2000.00 €”

Having extracted derivations, the maintainer becomes able
to comprehend the logic of computation of particular business
term or a set of terms, and validate it with stakeholders.

According to GUIDE, action assertions may be classified in
several ways. The first classification that we use in our ap-
proach distinguishes action assertions in to the condition, in-
tegrity constraint, and authorization. A condition is an asser-
tion that if something is true, another business rule will be
applied. We consider this kind of assertion as KDM Ac-
tionElement kind of Condition has a direct data flow relation-
ship with an element representing implementation of particu-
lar term unit from identified set of term units. This kind of
business rule helps the maintainer to understand how many
and which conditions evaluate particular business term and
evaluate the impact of source code modification to computa-
tion of this term. Integrity constraints define assertions that
must be always true. They are derived considering properties
of term units (i.e. they are defined within data definition files
as mandatory fields or unique indices; or within form defini-
tions as required fields). The authority rules represent the con-
figuration and usage of access control lists.

The second classification distinguishes action assertions in-
to the action controlling and action influencing assertions. An
action controlling assertion describes what must or must not
happen. In the systems this kind of action assertions typically
appears as error messages (e.g. VBA function MsgBox kind of

critical) after which a control flow terminates. Therefore, we
derive it as a slice SAC, a set of ActionElements, computed us-
ing backward slicing of CFG with criterion CAC=<DE, AE>,
where DE is a kind of DataElement, defined within a set of
elements that implement particular term unit, representing
error message text or variable used to produce a text are de-
fined within a set of term units, and AE is an ActionElement
representing raise of error message after which an exit from
loop or procedure follows. Action influencing assertion de-
scribes what should or should not happen. In the systems they
typically appear as warning messages (e.g. VBA function
MsgBox kind of warning or question) after which a control
flow may continue. We derive it as a slice SAI, a set of Ac-
tionElements, computed using backward slicing of CFG with
criterion CAI=<DE, AE>, where DE is a DataElement, defined
within a set of elements that implement particular term unit,
representing error message text or variable used to produce a
text, and AE is an ActionElement representing raise of ques-
tioning or warning message. Having derived this kind of ac-
tion assertions, the maintainer is able to quickly find the re-
quired error, warning or questioning messages and examine
the trace of control flow that influence raise of the message.

4 CONCLUSIONS AND FURTHER RESEARCH

In this paper we have presented the process-centered model-

driven approach for business rules discovery from existing software

systems. We have shown which of reverse engineering activities

must be involved to discover representation of the knowledge about

the software system. We also have discussed how the source code

analysis techniques can be applied for the representation to abstract

the business logic implemented in the system. We have observed that

employing standard representation of discovered knowledge about

the software system facilitate reverse engineering activities by ena-

bling independence from the implementation platform. However,

KDM representation is only intermediate format valuable for auto-

mated analysis. Seeking to produce more comprehensive representa-

tions of views of particular software system aspect, the conversion to

static and dynamic UML models must be considered. In order to be

able to validate discovered rules with stakeholders, transformations

to business specific representations such as SBVR, Decision Tables

and Trees, must be considered as well.

5 REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std

610.12-1990, IEEE, 1990

[2] J.-F. Bergeretti, B. A., Carré, “Information-flow and data-flow analysis of

while-programs”, ACM Trans. Program. Lang. Syst., ACM, 1985, Vol. 7(1), pp.

37-61

[3] C.-C. Chiang, “Extracting business rules from legacy systems into reusable

components, System of Systems Engineering, 2006 IEEE/SMC International

Conference on 2006

[4] X. Gang, “Business Rule Extraction from Legacy System Using Dependence-

Cache Slicing”, Proceedings of the 2009 First IEEE International Conference on In-

International Journal of Scientific & Engineering Research Volume 3, Issue 10, October-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

formation Science and Engineering, IEEE Computer Society, 2009, pp. 4214-4218

[5] H. Huang, “Business Rule Extraction from Legacy Code”, Proceedings of the

20th Conference on Computer Software and Applications, IEEE Computer Socie-

ty, 1996, pp. 162-168

[6] U. Khedker, A. Sanyal, and B. Karkare, “Data Flow Analysis: Theory and

Practice, CRC Press, Inc., 2009

[7] Nechasky, M. “Reverse engineering of XML schemas to conceptual dia-

grams”, Proceedings of the Sixth Asia-Pacific Conference on Conceptual Modeling,

Volume 96, Australian Computer Society, Inc., 2009, pp. 117-128

[8] OMG. Architecture Driven Modernization Task Force, URL

http://adm.omg.org, 2012

[9] OMG. Knowledge Discovery Metamodel Specification Version 1.3,

http://www.omg.org/spec/KDM/1.3/PDF/, 2011

[10] OMG. Architecture driven modernization standards roadmap,

http://adm.omg.org/ADMTF Roadmap.pdf

, 2009

[11] OMG. Abstract Syntax Tree Metamodel v1.0,

http://www.omg.org/spec/ASTM/1.0/, 2009

[12] E. Putrycz, A.W. Kark, “Connecting Legacy Code, Business Rules and Docu-

mentation”, Proceedings of the International Symposium on Rule Representation,

Interchange and Reasoning on the Web Springer-Verlag, 2008, pp. 17-30

[13] R. C. Seacord, D. Plakosh and G. A. Lewis, “Modernizing Legacy Systems:

Software Technologies”, Engineering Process and Business Practices. Addison-

Wesley Longman Publishing Co., Inc., 2003

[14] F. Tip, “A Survey of Program Slicing Techniques”, Journal of Programming

Languages, 1995, Vol. 3, pp. 121-189

[15] W.M. Ulrich, P. Newcomb, “Information Systems Transformation: Architec-

ture-Driven Modernization Case Studies”, Morgan Kaufmann Publishers

Inc., 2010

[16] X. Wang et al., “Business Rules Extraction from Large Legacy Systems”, Pro-

ceedings of the Eighth Euromicro Working Conference on Software Maintenance and

Reengineering (CSMR'04). IEEE Computer Society, 2004, pp. 249-254

[17] D. Hay, K. Healy, “Defining business rules-what are they really”, Final Re-

port, 2001.

[18] G. Canfora, A. Cimitile, “Software Maintenance”, In Proc. 7th Int. Conf. Soft-

ware Engineering and Knowledge Engineering, 1995, pp. 478-486

